🎯 Tingkatan Paralelisme
Paralelisme dalam Komputer
Paralelisme adalah eksekusi multiple operasi secara bersamaan untuk meningkatkan throughput dan performance.
| Level Paralelisme | Contoh | Scope |
|---|---|---|
| Bit-level | 32-bit vs 64-bit processor | Instruction |
| Instruction-level | Pipelining, superscalar | Basic block |
| Data-level | SIMD, vector processing | Loop iterations |
| Task-level | Multicore, multiprocessor | Program/thread |
Flynn's Taxonomy
Klasifikasi arsitektur komputer berdasarkan instruction stream dan data stream:
Single Instruction, Single Data
(Traditional uniprocessor)
Single Instruction, Multiple Data
(Vector processors, GPU)
Multiple Instruction, Single Data
(Rarely used)
Multiple Instruction, Multiple Data
(Multicore, clusters)
🖥️ Arsitektur Multicore
Multicore vs Manycore
| Aspek | Multicore | Manycore |
|---|---|---|
| Jumlah Core | 2-64 cores | 64+ cores |
| Kompleksitas Core | Complex cores (out-of-order) | Simple cores (in-order) |
| Target Aplikasi | General purpose | Highly parallel workloads |
| Contoh | Intel Core i7, AMD Ryzen | NVIDIA GPU, Intel Xeon Phi |
Hierarki Memori Multicore
📊 Amdahl's Law
Konsep Amdahl's Law
Amdahl's Law memprediksi maximum speedup yang bisa dicapai ketika hanya sebagian program yang dioptimasi:
🎮 Simulator Amdahl's Law
⚖️ Perbandingan CPU vs GPU
Arsitektur CPU vs GPU
| Karakteristik | CPU | GPU |
|---|---|---|
| Core Count | 4-64 cores | 1000+ cores |
| Core Complexity | Complex (out-of-order) | Simple (in-order) |
| Cache Hierarchy | Large, complex | Small, simple |
| Clock Speed | 2-5 GHz | 1-2 GHz |
| Power Efficiency | Lower (per core) | Higher (per FLOP) |
| Ideal Workload | Sequential, branchy code | Data-parallel, regular code |
🎯 Parallel Task Execution
Simulasi eksekusi task paralel pada multicore system:
🚀 Arsitektur Paralel Modern
Heterogeneous Computing
Kombinasi different processor types untuk optimal performance:
Performance
Throughput
Specialized
Trend Masa Depan
- Chiplet Technology: Modular processor design
- 3D Stacking: Vertical integration untuk density
- Domain-Specific Architecture: Optimized untuk workload tertentu
- Quantum Computing: Parallelisme quantum
- Neuromorphic Computing: Brain-inspired architecture