Tren Teknologi Cloud
Edge Computing, Hybrid Cloud, dan Masa Depan Komputasi Awan
Tujuan Pembelajaran
Setelah mengikuti praktikum ini, mahasiswa diharapkan mampu:
Edge Computing Architecture
Memahami konsep dan arsitektur edge computing serta perbedaannya dengan cloud tradisional
Hybrid Cloud Strategy
Mengimplementasikan solusi hybrid cloud yang terintegrasi antara public dan private cloud
Use Case Analysis
Menganalisis use cases untuk edge computing dalam skenario IoT dan real-time processing
Distributed Architecture
Membangun arsitektur yang menggabungkan cloud public, private, dan edge locations
Trade-off Analysis
Mengevaluasi trade-offs antara latency, bandwidth, dan cost dalam distributed systems
Real-time Processing
Mengimplementasikan IoT dan real-time processing di edge environment
Edge Computing Revolution
Membawa komputasi lebih dekat ke sumber data untuk mengurangi latency dan mengoptimalkan bandwidth
Traditional Cloud
- High Latency (100-200ms)
- Bandwidth Intensive
- Centralized Management
- Unlimited Scalability
- Internet Dependency
Edge Computing
- Low Latency (<10ms)
- Bandwidth Optimized
- Distributed Management
- Limited Local Resources
- Offline Operation
1. Arsitektur Edge Computing
ArchitectureCloud Layer
Central ProcessingEdge Layer
Regional ProcessingDevice Layer
Local ProcessingKey Benefits:
Response time <10ms untuk real-time applications
Hanya data yang relevan dikirim ke cloud
Data sensitive diproses secara lokal
Dapat beroperasi tanpa koneksi internet konstan
2. Implementasi Edge Computing dengan AWS IoT Greengrass
PraktikumA. Setup AWS IoT Greengrass v2
import json
import boto3
import psutil
import time
from datetime import datetime
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class EdgeDevice:
def __init__(self, thing_name, iot_client):
self.thing_name = thing_name
self.iot_client = iot_client
self.gg_client = boto3.client('greengrassv2')
def create_thing(self):
"""Create IoT Thing for edge device"""
try:
response = self.iot_client.create_thing(
thingName=self.thing_name
)
logger.info(f"Created IoT Thing: {self.thing_name}")
return response
except Exception as e:
logger.error(f"Error creating thing: {e}")
raise
def create_certificates(self):
"""Create certificates for secure communication"""
response = self.iot_client.create_keys_and_certificate(
setAsActive=True
)
certificate_arn = response['certificateArn']
certificate_pem = response['certificatePem']
private_key = response['keyPair']['PrivateKey']
logger.info("Created IoT certificates")
return certificate_arn, certificate_pem, private_key
def deploy_greengrass_component(self, component_name):
"""Deploy Greengrass component to edge device"""
try:
response = self.gg_client.create_component_version(
inlineRecipe=self.create_component_recipe(component_name)
)
logger.info(f"Deployed component: {component_name}")
return response
except Exception as e:
logger.error(f"Error deploying component: {e}")
raise
def create_component_recipe(self, component_name):
"""Create component recipe for edge processing"""
recipe = {
"RecipeFormatVersion": "2020-01-25",
"ComponentName": component_name,
"ComponentVersion": "1.0.0",
"ComponentDescription": "Edge data processing component",
"ComponentPublisher": "EdgePlatform",
"Manifests": [
{
"Platform": {
"os": "linux"
},
"Lifecycle": {
"Install": "python3 -m pip install -r {artifacts:decompressedPath}/requirements.txt",
"Run": "python3 -u {artifacts:decompressedPath}/edge_processor.py"
},
"Artifacts": [
{
"URI": "s3://edge-components/{component_name}/v1.0.0/edge_processor.zip"
}
]
}
]
}
return json.dumps(recipe)
B. Edge Data Processing Component
import json
import time
import logging
from typing import Dict, Any
import awsiot.greengrasscoreipc
import awsiot.greengrasscoreipc.client as client
from awsiot.greengrasscoreipc.model import (
QOS,
PublishToIoTCoreRequest,
SubscribeToTopicRequest,
SubscriptionResponseMessage
)
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class EdgeDataProcessor:
def __init__(self):
self.ipc_client = awsiot.greengrasscoreipc.connect()
self.telemetry_data = []
self.anomaly_threshold = 2.5 # Standard deviations
def process_sensor_data(self, sensor_data: Dict[str, Any]) -> Dict[str, Any]:
"""Process sensor data at the edge"""
try:
# Real-time anomaly detection
processed_data = {
'timestamp': sensor_data.get('timestamp'),
'sensor_id': sensor_data.get('sensor_id'),
'raw_value': sensor_data.get('value'),
'processed_value': self.apply_filters(sensor_data.get('value')),
'anomaly_detected': self.detect_anomaly(sensor_data.get('value')),
'processing_location': 'edge'
}
# Only send critical data to cloud
if processed_data['anomaly_detected']:
self.publish_to_cloud(processed_data)
return processed_data
except Exception as e:
logger.error(f"Error processing sensor data: {e}")
return {}
def apply_filters(self, value: float) -> float:
"""Apply digital filters for noise reduction"""
# Simple moving average filter
self.telemetry_data.append(value)
if len(self.telemetry_data) > 10:
self.telemetry_data.pop(0)
return sum(self.telemetry_data) / len(self.telemetry_data)
def detect_anomaly(self, value: float) -> bool:
"""Detect anomalies using statistical methods"""
if len(self.telemetry_data) < 5:
return False
mean = sum(self.telemetry_data) / len(self.telemetry_data)
variance = sum((x - mean) ** 2 for x in self.telemetry_data) / len(self.telemetry_data)
std_dev = variance ** 0.5
return abs(value - mean) > self.anomaly_threshold * std_dev
def publish_to_cloud(self, data: Dict[str, Any]):
"""Publish processed data to AWS IoT Core"""
try:
request = PublishToIoTCoreRequest(
topic_name='edge/processed/data',
qos=QOS.AT_LEAST_ONCE,
payload=json.dumps(data).encode()
)
self.ipc_client.publish_to_iot_core(request)
logger.info("Published processed data to cloud")
except Exception as e:
logger.error(f"Error publishing to cloud: {e}")
def run(self):
"""Main execution loop"""
logger.info("Starting edge data processor...")
while True:
# Simulate sensor data processing
sensor_data = {
'timestamp': datetime.now().isoformat(),
'sensor_id': 'temperature_sensor_001',
'value': self.read_sensor_value(),
'unit': 'celsius'
}
processed_data = self.process_sensor_data(sensor_data)
logger.info(f"Processed data: {processed_data}")
time.sleep(1) # Process every second
if __name__ == "__main__":
processor = EdgeDataProcessor()
processor.run()
Hybrid Cloud Strategy
Menggabungkan keunggulan public cloud dan private cloud dengan orchestration yang terintegrasi
3. Arsitektur Hybrid Cloud Modern
ArchitectureUse Cases:
- Web Applications
- Big Data Analytics
- AI/ML Training
- Disaster Recovery
Use Cases:
- Sensitive Data
- Legacy Applications
- Regulatory Compliance
- Low-latency Processing
Use Cases:
- Real-time Analytics
- IoT Data Processing
- Content Caching
- Offline Operation
Strategic Benefits:
Cost Optimization
Balance between Capex and Opex dengan workload placement yang optimal
Security & Compliance
Data sovereignty dan regulatory compliance dengan hybrid approach
Flexibility & Control
Workload portability dan deployment flexibility across environments
Performance
Optimal performance dengan workload placement berdasarkan requirements
4. Implementasi Hybrid Cloud dengan AWS Outposts
PraktikumA. Terraform Configuration untuk Hybrid Setup
# AWS Outposts Configuration
resource "aws_outposts_outpost" "main" {
name = "production-outpost"
site_id = var.outpost_site_id
tags = {
Environment = var.environment
Purpose = "hybrid-workloads"
}
}
# Outpost Subnet Configuration
resource "aws_subnet" "outpost" {
vpc_id = aws_vpc.main.id
cidr_block = var.outpost_subnet_cidr
availability_zone = "${var.aws_region}-outpost-1"
outpost_arn = aws_outposts_outpost.main.arn
tags = {
Name = "${var.cluster_name}-outpost-subnet"
}
}
# Hybrid Load Balancer
resource "aws_lb" "hybrid" {
name = "${var.cluster_name}-hybrid-alb"
internal = false
load_balancer_type = "application"
subnets = [
aws_subnet.public[0].id,
aws_subnet.public[1].id,
aws_subnet.outpost.id
]
enable_deletion_protection = true
tags = {
Environment = var.environment
Type = "hybrid"
}
}
# EC2 Instance pada Outpost
resource "aws_instance" "outpost_worker" {
ami = var.outpost_ami_id
instance_type = "m5.large"
subnet_id = aws_subnet.outpost.id
# Outpost-specific configuration
outpost_arn = aws_outposts_outpost.main.arn
vpc_security_group_ids = [aws_security_group.outpost.id]
user_data = base64encode(templatefile("${path.module}/outpost-userdata.sh", {
cluster_name = var.cluster_name
region = var.aws_region
}))
tags = {
Name = "${var.cluster_name}-outpost-worker"
Environment = var.environment
}
depends_on = [aws_outposts_outpost.main]
}
# Hybrid Data Sync Configuration
resource "aws_datasync_location_efs" "hybrid_sync" {
efs_file_system_arn = aws_efs_file_system.main.arn
ec2_config {
security_group_arns = [aws_security_group.datasync.arn]
subnet_arn = aws_subnet.private[0].arn
}
tags = {
Name = "hybrid-data-sync"
}
}
Real-world Use Cases
Implementasi edge computing dan hybrid cloud dalam skenario industri nyata
Smart Manufacturing
Predictive Maintenance
Real-time monitoring of industrial equipment dengan AI-powered anomaly detection
Vibration sensors & real-time processing
Historical data & ML model training
Global analytics & dashboard
Healthcare IoT
Remote Patient Monitoring
Real-time health monitoring dengan privacy-preserving edge processing
Wearable devices & local processing
Patient records & HIPAA compliance
Research analytics & population health
Retail Analytics
In-store Customer Experience
Real-time customer behavior analysis dengan edge video analytics
Camera feeds & local AI processing
Store-level analytics & inventory
Chain-wide insights & CRM
Future Trends & Predictions
Tren teknologi cloud yang akan mendominasi dalam 5-10 tahun ke depan
AI-powered Edge Computing
Integrasi AI/ML models pada edge devices untuk autonomous decision making
Quantum-Cloud Integration
Hybrid quantum-classical computing sebagai cloud service
Autonomous Edge Networks
Self-healing, self-optimizing edge networks dengan AI operations
Neuromorphic Computing
Brain-inspired computing architectures untuk ultra-efficient edge AI
5. Skills untuk Masa Depan Cloud Computing
Career Development🔄 Distributed Systems
- Edge Computing Architecture
- Hybrid Cloud Integration
- Multi-cloud Strategy
- Data Synchronization
🤖 AI/ML Operations
- ML Model Deployment
- Edge AI Optimization
- Federated Learning
- MLOps Pipeline
🔒 Security & Compliance
- Zero Trust Architecture
- Edge Security
- Data Privacy
- Compliance Automation
⚡ Performance Optimization
- Latency Optimization
- Bandwidth Management
- Cost Optimization
- Resource Allocation
Loading materi pertemuan...