Evaluasi Solusi Cloud

Analisis Menyeluruh: Performa, Skalabilitas, dan Keamanan

Estimasi: 150 menit Tingkat: Lanjut Tools: CloudWatch, Load Testing, Security Scanner
Pertemuan 14 dari 16

Penting: Evaluasi Komprehensif

Materi ini membutuhkan pemahaman mendalam tentang semua konsep cloud yang telah dipelajari sebelumnya. Pastikan Anda sudah menyelesaikan praktikum pertemuan 1-13.

Tujuan Pembelajaran

Setelah mengikuti praktikum ini, mahasiswa diharapkan mampu:

Analisis Performa

Melakukan evaluasi komprehensif terhadap performa solusi cloud yang diimplementasikan

Testing Skalabilitas

Menguji kemampuan skalabilitas sistem under various load conditions

Audit Keamanan

Melakukan security assessment dan identifikasi potential vulnerabilities

Framework Evaluasi

Menerapkan comprehensive evaluation framework untuk cloud solutions

Laporan Evaluasi

Membuat detailed evaluation report dengan actionable recommendations

Optimization Strategy

Mengembangkan strategy untuk performance optimization dan cost reduction

Framework Evaluasi Cloud

Pendekatan sistematis untuk mengevaluasi solusi cloud secara menyeluruh

Performa

Response Time
≤ 200ms
Throughput
≥ 1000 RPM
Availability
≥ 99.9%

Skalabilitas

Auto-scaling
5 min
Load Distribution
Even
Resource Utilization
60-80%

Keamanan

Vulnerabilities
0 Critical
Compliance
100%
Encryption
Enabled

Proses Evaluasi

1

Planning & Preparation

Define evaluation criteria, tools, and success metrics

2

Performance Testing

Execute load, stress, and endurance tests

3

Security Assessment

Conduct vulnerability scanning and penetration testing

4

Data Analysis

Analyze results and identify improvement areas

5

Reporting

Create comprehensive evaluation report

Evaluasi Performa

1. Performance Testing Strategy

Praktikum

Load Testing

Test system behavior under expected load

  • Concurrent users: 100-1000
  • Duration: 30-60 minutes
  • Metrics: Response time, throughput

Stress Testing

Determine breaking point and recovery

  • Load: 150-200% of capacity
  • Duration: Until failure
  • Metrics: Recovery time, errors

Endurance Testing

Identify memory leaks and stability

  • Duration: 8-24 hours
  • Load: 80% of capacity
  • Metrics: Memory usage, performance degradation

A. k6 Load Testing Script

performance/load-test.js
import http from 'k6/http'; import { check, sleep } from 'k6'; import { Rate, Trend, Counter } from 'k6/metrics'; // Custom metrics const failureRate = new Rate('failed_requests'); const requestDuration = new Trend('request_duration'); const totalRequests = new Counter('total_requests'); export const options = { stages: [ { duration: '2m', target: 100 }, // Ramp-up { duration: '5m', target: 100 }, // Stable load { duration: '2m', target: 200 }, // Spike { duration: '3m', target: 200 }, // High load { duration: '2m', target: 0 }, // Ramp-down ], thresholds: { http_req_duration: ['p(95)<500'], // 95% requests under 500ms failed_requests: ['rate<0.05'], // Less than 5% failures http_reqs: ['count>1000'], // More than 1000 requests }, }; export default function () { const urls = [ 'https://api.example.com/products', 'https://api.example.com/orders', 'https://api.example.com/users', ]; const url = urls[Math.floor(Math.random() * urls.length)]; const params = { headers: { 'Authorization': 'Bearer ' + __ENV.API_TOKEN, 'Content-Type': 'application/json', }, tags: { name: 'api_request' }, }; totalRequests.add(1); const response = http.get(url, params); const success = check(response, { 'status is 200': (r) => r.status === 200, 'response time < 500ms': (r) => r.timings.duration < 500, 'has response body': (r) => r.body.length > 0, }); failureRate.add(!success); requestDuration.add(response.timings.duration); sleep(1); }

B. Performance Monitoring Dashboard

monitoring/dashboard.py
import boto3 import json import time from datetime import datetime, timedelta import pandas as pd import matplotlib.pyplot as plt class PerformanceMonitor: def __init__(self): self.cloudwatch = boto3.client('cloudwatch') self.ec2 = boto3.client('ec2') def get_performance_metrics(self, instance_id, hours=24): """Collect comprehensive performance metrics""" end_time = datetime.utcnow() start_time = end_time - timedelta(hours=hours) metrics = { 'cpu_utilization': self.get_cpu_metrics(instance_id, start_time, end_time), 'memory_usage': self.get_memory_metrics(instance_id, start_time, end_time), 'network_io': self.get_network_metrics(instance_id, start_time, end_time), 'disk_io': self.get_disk_metrics(instance_id, start_time, end_time), } return metrics def get_cpu_metrics(self, instance_id, start_time, end_time): response = self.cloudwatch.get_metric_statistics( Namespace='AWS/EC2', MetricName='CPUUtilization', Dimensions=[{'Name': 'InstanceId', 'Value': instance_id}], StartTime=start_time, EndTime=end_time, Period=300, Statistics=['Average', 'Maximum'] ) return response['Datapoints'] def analyze_performance_trends(self, metrics): """Analyze performance trends and identify issues""" analysis = { 'cpu_bottlenecks': self.analyze_cpu_bottlenecks(metrics['cpu_utilization']), 'memory_issues': self.analyze_memory_issues(metrics['memory_usage']), 'network_bottlenecks': self.analyze_network_issues(metrics['network_io']), 'recommendations': [] } # Generate recommendations if analysis['cpu_bottlenecks']['high_usage_periods'] > 0: analysis['recommendations'].append( "Consider upgrading instance type due to consistent high CPU usage" ) return analysis def generate_performance_report(self, instance_id): """Generate comprehensive performance report""" metrics = self.get_performance_metrics(instance_id) analysis = self.analyze_performance_trends(metrics) report = { 'instance_id': instance_id, 'evaluation_period': '24 hours', 'metrics_summary': { 'avg_cpu_utilization': self.calculate_average(metrics['cpu_utilization']), 'max_cpu_utilization': self.calculate_maximum(metrics['cpu_utilization']), 'performance_score': self.calculate_performance_score(analysis) }, 'analysis': analysis, 'timestamp': datetime.utcnow().isoformat() } return report # Usage monitor = PerformanceMonitor() report = monitor.generate_performance_report('i-1234567890abcdef0') print(json.dumps(report, indent=2))

Evaluasi Skalabilitas

2. Scalability Assessment Framework

Analisis
Load Type
Scaling Strategy
Success Criteria
Sudden Spike

100 → 1000 users in 2 min

Auto-scaling

Horizontal scaling with load balancer

Response time < 2s
Zero downtime
Gradual Growth

100 → 500 users over 1 hour

Scheduled

Pre-warmed instances

Consistent performance
Cost effective
Seasonal Pattern

Monthly/Yearly cycles

Predictive

ML-based forecasting

Proactive scaling
Optimized resources

A. Auto-scaling Configuration Test

scaling/auto-scaling-test.py
import boto3 import time from datetime import datetime import threading class AutoScalingEvaluator: def __init__(self): self.autoscaling = boto3.client('autoscaling') self.cloudwatch = boto3.client('cloudwatch') self.ec2 = boto3.client('ec2') def trigger_scaling_event(self, asg_name, target_cpu=80): """Trigger auto-scaling by simulating high CPU load""" print(f"Triggering scaling event for ASG: {asg_name}") # Get current instances response = self.autoscaling.describe_auto_scaling_groups( AutoScalingGroupNames=[asg_name] ) initial_capacity = len(response['AutoScalingGroups'][0]['Instances']) print(f"Initial capacity: {initial_capacity} instances") # Simulate CPU load to trigger scaling self.simulate_cpu_load(asg_name, target_cpu) # Monitor scaling activities self.monitor_scaling_activities(asg_name, initial_capacity) def simulate_cpu_load(self, asg_name, target_cpu): """Simulate CPU load using CloudWatch metrics""" # This would typically be done by actually generating load # For simulation, we'll put custom metrics instances = self.get_asg_instances(asg_name) for instance_id in instances: self.cloudwatch.put_metric_data( Namespace='AWS/EC2', MetricData=[ { 'MetricName': 'CPUUtilization', 'Dimensions': [ { 'Name': 'InstanceId', 'Value': instance_id }, ], 'Timestamp': datetime.utcnow(), 'Value': target_cpu, 'Unit': 'Percent' }, ] ) print(f"Simulated {target_cpu}% CPU load on {len(instances)} instances") def monitor_scaling_activities(self, asg_name, initial_capacity, timeout=600): """Monitor scaling activities and measure performance""" start_time = time.time() scaling_detected = False print("Monitoring scaling activities...") while time.time() - start_time < timeout: response = self.autoscaling.describe_scaling_activities( AutoScalingGroupName=asg_name, MaxRecords=10 ) current_activities = response['Activities'] # Check for scaling activities for activity in current_activities: if activity['StatusCode'] == 'InProgress': scaling_detected = True print(f"Scaling activity detected: {activity['Description']}") # Measure scaling time scaling_start = activity['StartTime'] scaling_duration = datetime.utcnow() - scaling_start print(f"Scaling duration: {scaling_duration}") # Check current capacity response = self.autoscaling.describe_auto_scaling_groups( AutoScalingGroupNames=[asg_name] ) current_capacity = len(response['AutoScalingGroups'][0]['Instances']) if current_capacity > initial_capacity and scaling_detected: print(f"Scaling completed! New capacity: {current_capacity} instances") return { 'success': True, 'scaling_time': time.time() - start_time, 'new_capacity': current_capacity, 'instances_added': current_capacity - initial_capacity } time.sleep(10) return {'success': False, 'error': 'Scaling timeout'} # Evaluation execution evaluator = AutoScalingEvaluator() result = evaluator.trigger_scaling_event('my-auto-scaling-group', 85) print("Scaling evaluation result:", result)

Evaluasi Keamanan

3. Comprehensive Security Assessment

Audit

Infrastructure Security

Network ACLs configured
Security groups restrictive
VPC flow logs disabled

Data Protection

Encryption at rest enabled
SSL/TLS enforced
Backup encryption missing

Access Management

MFA enabled for root
IAM roles too permissive
Access keys not rotated

A. Security Scanning Automation

security/security-scanner.py
import boto3 import json from datetime import datetime from typing import Dict, List class SecurityScanner: def __init__(self): self.ec2 = boto3.client('ec2') self.iam = boto3.client('iam') self.s3 = boto3.client('s3') self.securityhub = boto3.client('securityhub') def comprehensive_scan(self) -> Dict: """Perform comprehensive security scan""" scan_results = { 'timestamp': datetime.utcnow().isoformat(), 'findings': [], 'risk_level': 'LOW', 'recommendations': [] } # Run various security checks scan_results['findings'].extend(self.check_network_security()) scan_results['findings'].extend(self.check_iam_security()) scan_results['findings'].extend(self.check_data_protection()) scan_results['findings'].extend(self.check_monitoring()) # Calculate overall risk level scan_results['risk_level'] = self.calculate_risk_level(scan_results['findings']) # Generate recommendations scan_results['recommendations'] = self.generate_recommendations(scan_results['findings']) return scan_results def check_network_security(self) -> List[Dict]: """Check network security configurations""" findings = [] # Check security groups response = self.ec2.describe_security_groups() for sg in response['SecurityGroups']: for permission in sg.get('IpPermissions', []): # Check for overly permissive rules for ip_range in permission.get('IpRanges', []): if ip_range['CidrIp'] == '0.0.0.0/0': findings.append({ 'severity': 'HIGH', 'category': 'NETWORK_SECURITY', 'resource': sg['GroupId'], 'description': f"Security group {sg['GroupId']} allows inbound traffic from anywhere", 'recommendation': 'Restrict inbound traffic to specific IP ranges' }) return findings def check_iam_security(self) -> List[Dict]: """Check IAM security configurations""" findings = [] # Check IAM policies response = self.iam.list_policies(Scope='Local') for policy in response['Policies']: policy_version = self.iam.get_policy_version( PolicyArn=policy['Arn'], VersionId=policy['DefaultVersionId'] ) # Analyze policy document for excessive permissions if self.has_admin_permissions(policy_version['PolicyVersion']['Document']): findings.append({ 'severity': 'HIGH', 'category': 'IAM_SECURITY', 'resource': policy['PolicyName'], 'description': f"IAM policy {policy['PolicyName']} has administrative permissions", 'recommendation': 'Apply principle of least privilege' }) return findings def generate_security_report(self, scan_results: Dict) -> str: """Generate human-readable security report""" report = f""" # Cloud Security Assessment Report **Generated:** {scan_results['timestamp']} **Overall Risk Level:** {scan_results['risk_level']} ## Executive Summary - Total Findings: {len(scan_results['findings'])} - High Severity: {len([f for f in scan_results['findings'] if f['severity'] == 'HIGH'])} - Recommendations: {len(scan_results['recommendations'])} ## Critical Findings """ high_findings = [f for f in scan_results['findings'] if f['severity'] == 'HIGH'] for finding in high_findings[:5]: # Top 5 critical findings report += f"\n### {finding['category']}\n" report += f"- **Resource:** {finding['resource']}\n" report += f"- **Description:** {finding['description']}\n" report += f"- **Recommendation:** {finding['recommendation']}\n" report += "\n## Recommendations\n" for rec in scan_results['recommendations'][:5]: # Top 5 recommendations report += f"- {rec}\n" return report # Execute security scan scanner = SecurityScanner() results = scanner.comprehensive_scan() report = scanner.generate_security_report(results) print(report)

Tugas Praktikum

Lakukan evaluasi komprehensif terhadap solusi cloud yang telah diimplementasikan

01

Performance Evaluation

40 Points

Requirements:

  • Implement comprehensive performance testing suite
  • Execute load, stress, and endurance tests
  • Analyze results and identify performance bottlenecks
  • Create performance report with visualizations

Key Metrics:

≤200ms Response Time
≥99.9% Availability
≥1000 RPM
Deadline: 7 hari
02

Scalability Assessment

35 Points

Requirements:

  • Test auto-scaling configurations under various load patterns
  • Measure scaling time and resource utilization
  • Evaluate load distribution and failover capabilities
  • Document scalability limitations and improvements

Success Criteria:

Scaling within 5 minutes
Zero downtime during scaling
Predictive scaling implemented
Deadline: 5 hari
03

Security Audit

25 Points

Requirements:

  • Conduct comprehensive security vulnerability assessment
  • Check compliance with security best practices
  • Identify and document security risks
  • Create remediation plan with priorities

Security Domains:

Network Security IAM & Access Data Protection Monitoring
Deadline: 7 hari

Expected Deliverables

Comprehensive Evaluation Report

Detailed analysis with findings, metrics, and recommendations

Performance Dashboards

Visual representations of key performance indicators

Security Assessment

Vulnerability report with risk ratings and remediation steps

Demo Presentation

5-10 minute presentation of findings and recommendations